Viral Vector Manufacturing Market Size
Study Period | 2021 - 2029 |
Market Size (2024) | USD 1.25 Billion |
Market Size (2029) | USD 4.19 Billion |
CAGR (2024 - 2029) | 27.36 % |
Fastest Growing Market | Asia-Pacific |
Largest Market | North America |
Market Concentration | Low |
Major Players*Disclaimer: Major Players sorted in no particular order |
Viral Vector Manufacturing Market Analysis
The Global Viral Vector Manufacturing Market size is estimated at USD 1.25 billion in 2024, and is expected to reach USD 4.19 billion by 2029, growing at a CAGR of 27.36% during the forecast period (2024-2029).
The COVID-19 pandemic had underlined the importance of vaccine development for the global population, and it has had a positive impact on the growth of the viral vector manufacturing market. According to the WHO Global COVID-19 Vaccination - Strategic Vision for 2022, there are at least 17 vaccines in use. As of November 8, 2022, 12.88 billion doses were administered, and another 400 and more vaccine candidates were in clinical and preclinical development. Two viral vector vaccines have been authorized for emergency use in many countries for COVID-19, as of January 7, 2022, according to the Viral Vector Vaccines segment published by the Infectious Diseases Society of America. Moreover, various companies are launching their products and are involved in various partnerships, collaborations, and other developments which are expected to positively impact the market. For instance, in April 2020, AstraZeneca and Oxford University announced their partnership to develop a viral vectored vaccine utilizing a modified replication-deficient chimp adenovirus vector, ChAdOx1. Also, Janssen Biotech (Johnson & Johnson) has developed a viral vector vaccine utilizing a replication-incompetent human adenovirus vector and received approval from US FDA in February 2021, importance of viral vector manufacturing is increasing owing to the increasing research and developments occurring in current times.
The market is driven by the increasing prevalence of genetic disorders, cancer, and infectious diseases, the increasing number of clinical studies and availability of funding for gene therapy development, and potential applications in novel drug delivery approaches. For instance, as per the report published by the Foundation for Food & Agriculture Research in April 2022, African Swine Fever (ASF) has emerged as one of the highly contagious viruses that cause 100% mortality in swine. As of now, there is no commercially available vaccine to treat the disease. Therefore, to combat the disease, the Foundation for Food & Agricultural Research granted USD 145,000 to Genvax Technologies for developing a self-amplifying messenger RNA (saRNA) vaccine for African Swine Fever in association with the United States Department of Agriculture-Agricultural Research Services-Plum Island Animal Disease Center (USDA-ARS-PIADC). This prevalence of numerous infectious and viral diseases is motivating major companies to focus on viral vector product development and manufacturing.
Additionally, as the recombinant viral vectors are highly effective carriers of sequences encoding virus-disabling sequences, the appropriate and exact viral vectors usually need to be selected and adapted for application in the treatment of specific viral infections. Currently, there have been significant public and private sector initiatives are being taken for the development of viral vector vaccines, leading the key players to invest in capacity expansion for manufacturing activities. For example, in Augut 2022, Thermo Fisher opened a new manufacturing facility for viral vector production in Plainville, Massachusetts. The 300,000 square-foot-plant is opened with an aim to manufacture viral vectors, which are critical components in the development of gene therapies. Therefore, these related development activities by major players are also expected to boost the market's growth.
Government initiatives such as direct funding towards viral vector manufacture, which is increasing awareness, while the regulatory environment is getting streamlined via changes, such as prompt approval processes, are driving the studied market's growth. These aforementioned factors can propel the market for viral vector manufacturing and are expected to grow in the future. However, the high cost of gene therapies and challenges in viral vector manufacturing capacity can impact market growth negatively.
Viral Vector Manufacturing Market Trends
This section covers the major market trends shaping the Viral Vector Manufacturing Market according to our research experts:
Cancer Sub-segment is Expected to Grow Faster in the Disease Segment
The upsurge in the global incidence of cancer and modern healthcare facilities are acting as major drivers for the growth of the market studied. According to GLOBOCAN 2020, globally, there were 1,92,92,789 new cancer cases in 2020, and it is projected to increase to 2,88,87,940 cases by 2040. In 2022, there are numerous Phase I, Phase II, Phase III, and Phase IV clinical trials related to viral vectors for the treatment of various types of cancers such as brain, skin, liver, colon, breast, and kidney. These trials are being conducted in various academic centers and biotechnology companies. For instance, as of November 17, 2022, more than 663 ongoing interventional clinical trials related to gene therapy across different phases of development for cancer were there globally, as mentioned in the National Clinical Trial (NCT) Registry.
In the field of oncology, viral vector-based gene therapy has demonstrated steady progress. A variety of viral vectors have been engineered for both therapeutic and preventive applications in cancers. Many gene therapy strategies have been developed to treat a wide range of cancers, including suicide gene therapy, oncolytic virotherapy, anti-angiogenesis, and therapeutic gene vaccines. According to the study published in the Radiology and Oncology in March 2022, numerous opportunities exist for using viral vectors in cancer therapy. Due to their improved ability to transduce human cells, viral vectors are a desirable drug delivery option. Over a thousand clinical trials using viral vectors are being conducted worldwide to treat cancer in 2021. For instance, as per clinicaltrial.gov as of November 17, 2022, there are around 86 trials being active using viral vectors for the treatment of cancer. Thus, owing to the increase in global cancer incidence, the market is expected to see growth.
The increasing research and development activities for the development of viral vector vaccines or therapies are increasing the opportunity for novel product developments. For instance, in September 2021, building on the success of the Oxford-AstraZeneca vaccine against SARS-CoV-2, researchers from the University of Oxford and the Ludwig Institute for Cancer Research are creating a vaccine to treat cancer. a viral vector cancer vaccine reduces tumor size and improves survival rates in mouse models by generating efficient anti-tumor immune responses when combined with immunotherapy. it is expected that a first-in-human clinical trial of the therapeutic cancer vaccine will begin in patients with non-small cell lung cancer in the coming year. Thus, growing research and development activity on the viral vector bases cancer manufacturing vaccines
The surge in demand for the development of effective therapeutics for cancer management, the presence of a prompt approval process, and the prospects of novel drugs for significant product developments are the primary reasons responsible for significant research and development investments in the field of cancer therapeutics that are based on viral vectors. This, in turn, affects the growth of the cancer segment positively, and the cancer segment is hence expected to boost the market's growth.
North America is Expected to Witness Considerable Growth Over the Forecast Period
North America currently dominates the market for viral vector manufacturing and is expected to continue its stronghold for a few more years. In the United States, regulatory encouragement and patient advocacy have pushed rare disease clinical research to center stage. The significant incentives on offer through the Orphan Drugs Act (the United States) have encouraged pharmaceutical and biotechnology companies to consider the development of rare disease medicines as a potentially profitable venture.
Many companies have been expanding their facilities and investing a significant amount of capital in the region. For example, in October 2022, Kite, a Gilead Company announced the U.S. FDA has approved the company's retroviral vector (RVV) manufacturing facility in Oceanside, California, for commercial production of viral vetors. These developments could have a positive effect on the market growth as more research on viral vectors is anticipated. In October 2021, Catalent has invested USD 230 million to increase the production of viral vectors at its gene therapy campus in Harmans, Maryland.
The United States holds the largest market share in the North American region owing to various factors like the high adoption rate of new therapies, increasing investments by key players, and the high incidence rate of cancer. For instance, in January 2021, Fujifilm Corporation is planning to invest USD 40.0 million to establish a new processing facility to advance viral vector manufacturing and perform cutting-edge research in the field of advanced therapies in the greater-Boston area. The investment will be dedicated to Fujifilm Diosynth Biotechnologies, a contract development and manufacturing organization (CDMO) for biologics, viral vaccines, and viral vectors. Thus such favorable initiatives may surge the market growth in the United States over the forecast period.
Viral Vector Manufacturing Industry Overview
The viral vector manufacturing market is moderately competitive and has several key players. Owing to the growing demand for novel therapeutics to deal with life-threatening diseases, such as cancer, various smaller companies are also entering the market and holding a significant market share. Some of the key market players are Cognate BioServices Inc. (Cobra Biologics), Finvector, Fujifilm Holdings, Corporation (Fujifilm Diosynth Biotechnologies), Kaneka Corporation (Eurogentec), Merck KGaA, Uniqure NV, Oxford BioMedica PLC, Johnson & Johnson (Janssen Global Services LLC), AstraZeneca, Vibalogics, Danaher (Cytiva), Sanofi SA, F. Hoffmann-La Roche Ltd (Spark Therapeutics), Lonza, and Thermo Fisher Scientific Inc.
Viral Vector Manufacturing Market Leaders
-
FUJIFILM Diosynth Biotechnologies U.S.A. Inc.
-
Thermo Fisher Scientific
-
Cognate Bioservices
-
Merck KgaA
-
FinVector
*Disclaimer: Major Players sorted in no particular order
Viral Vector Manufacturing Market News
- In June 2022, Avid Bioservices, Inc. opened the analytical and process development (AD/PD) suites within the company's new, world-class viral vector development and Current Good manufacturing Plant (CGMP) manufacturing facility. Build-out of the viral vector facility's CGMP manufacturing suites is ongoing, with those capabilities expected to come online in mid-calendar 2023.
- In May 2022, AGC Biologics announced that it is adding viral vector suspension technology and capacity for the development and manufacturing of gene therapies at its commercial-grade campus in Longmont, Colo.
Viral Vector Manufacturing Market Report - Table of Contents
1. INTRODUCTION
1.1 Study Assumptions and Market Definition
1.2 Scope of the Study
2. RESEARCH METHODOLOGY
3. EXECUTIVE SUMMARY
4. MARKET DYNAMICS
4.1 Market Overview
4.2 Market Drivers
4.2.1 Rising Prevalence of Genetic Disorders, Cancer, and Infectious Diseases
4.2.2 Increasing Number of Clinical Studies and Availability of Funding for Gene Therapy Development
4.2.3 Potential Applications in Novel Drug Delivery Approaches
4.3 Market Restraints
4.3.1 High Cost of Gene Therapies
4.3.2 Challenges in Viral Vector Manufacturing Capacity
4.4 Porter's Five Forces Analysis
4.4.1 Threat of New Entrants
4.4.2 Bargaining Power of Buyers/Consumers
4.4.3 Bargaining Power of Suppliers
4.4.4 Threat of Substitute Products
4.4.5 Intensity of Competitive Rivalry
5. MARKET SEGMENTATION (Market Size by Value - USD million)
5.1 By Type
5.1.1 Adenoviral Vectors
5.1.2 Adeno-associated Viral Vectors
5.1.3 Lentiviral Vectors
5.1.4 Retroviral Vectors
5.1.5 Other Types
5.2 By Disease
5.2.1 Cancer
5.2.2 Genetic Disorders
5.2.3 Infectious Diseases
5.2.4 Other Diseases
5.3 By Application
5.3.1 Gene Therapy
5.3.2 Vaccinology
5.4 Geography
5.4.1 North America
5.4.1.1 United States
5.4.1.2 Canada
5.4.1.3 Mexico
5.4.2 Europe
5.4.2.1 Germany
5.4.2.2 United Kingdom
5.4.2.3 France
5.4.2.4 Italy
5.4.2.5 Spain
5.4.2.6 Rest of Europe
5.4.3 Asia-Pacific
5.4.3.1 China
5.4.3.2 Japan
5.4.3.3 India
5.4.3.4 Australia
5.4.3.5 South Korea
5.4.3.6 Rest of Asia-Pacific
5.4.4 Middle East & Africa
5.4.4.1 GCC
5.4.4.2 South Africa
5.4.4.3 Rest of Middle East & Africa
5.4.5 South America
5.4.5.1 Brazil
5.4.5.2 Argentina
5.4.5.3 Rest of South America
6. COMPETITIVE LANDSCAPE
6.1 Company Profiles
6.1.1 Charles River Laboratories (Cobra Biologics)
6.1.2 Finvector
6.1.3 Fujifilm Holdings Corporation (Fujifilm Diosynth Biotechnologies)
6.1.4 Kaneka Eurogentec SA
6.1.5 Merck KGaA
6.1.6 uniQure NV
6.1.7 Oxford Biomedica PLC
6.1.8 Johnson & Johnson (Janssen Global Services LLC)
6.1.9 AstraZeneca
6.1.10 Vibalogics
6.1.11 Danaher (Cytiva)
6.1.12 Sanofi
6.1.13 F. Hoffmann-La Roche Ltd (Spark Therapeutics)
6.1.14 Lonza
6.1.15 Thermo Fisher Scientific Inc.
- *List Not Exhaustive
7. MARKET OPPORTUNITIES AND FUTURE TRENDS
Viral Vector Manufacturing Industry Segmentation
As per the scope of this report, viral vectors represent one of the primary tools that can be used to deliver genetic material into cells. The viral vector manufacturing market is segmented by Type (Adenoviral Vectors, Adeno-associated Viral Vectors, Lentiviral Vectors, Retroviral Vectors, and Other Types), Disease (Cancer, Genetic Disorders, Infectious Diseases, and Other Diseases), Application (Gene Therapy and Vaccinology), and Geography (North America, Europe, Asia-Pacific, Middle East & Africa, and South America). The market report also covers the estimated market sizes and trends for 17 different countries across major regions, globally. The report offers the value (in USD million) for the above segments.
By Type | |
Adenoviral Vectors | |
Adeno-associated Viral Vectors | |
Lentiviral Vectors | |
Retroviral Vectors | |
Other Types |
By Disease | |
Cancer | |
Genetic Disorders | |
Infectious Diseases | |
Other Diseases |
By Application | |
Gene Therapy | |
Vaccinology |
Geography | ||||||||
| ||||||||
| ||||||||
| ||||||||
| ||||||||
|
Viral Vector Manufacturing Market Research FAQs
How big is the Global Viral Vector Manufacturing Market?
The Global Viral Vector Manufacturing Market size is expected to reach USD 1.25 billion in 2024 and grow at a CAGR of 27.36% to reach USD 4.19 billion by 2029.
What is the current Global Viral Vector Manufacturing Market size?
In 2024, the Global Viral Vector Manufacturing Market size is expected to reach USD 1.25 billion.
Who are the key players in Global Viral Vector Manufacturing Market?
FUJIFILM Diosynth Biotechnologies U.S.A. Inc., Thermo Fisher Scientific, Cognate Bioservices, Merck KgaA and FinVector are the major companies operating in the Global Viral Vector Manufacturing Market.
Which is the fastest growing region in Global Viral Vector Manufacturing Market?
Asia-Pacific is estimated to grow at the highest CAGR over the forecast period (2024-2029).
Which region has the biggest share in Global Viral Vector Manufacturing Market?
In 2024, the North America accounts for the largest market share in Global Viral Vector Manufacturing Market.
What years does this Global Viral Vector Manufacturing Market cover, and what was the market size in 2023?
In 2023, the Global Viral Vector Manufacturing Market size was estimated at USD 0.98 billion. The report covers the Global Viral Vector Manufacturing Market historical market size for years: 2021, 2022 and 2023. The report also forecasts the Global Viral Vector Manufacturing Market size for years: 2024, 2025, 2026, 2027, 2028 and 2029.
Viral Vector Manufacturing Industry Report
The report on Viral Vector Manufacturing Companies provides a comprehensive market overview, highlighting key market trends and industry statistics. The market is segmented by type, disease, application, and geography, offering a detailed market segmentation. The industry analysis covers various types of viral vectors, including adenoviral, adeno-associated, lentiviral, and retroviral vectors, among others. It also examines the application of these vectors in gene therapy and vaccinology, addressing their role in treating cancer, genetic disorders, infectious diseases, and other conditions.
The industry outlook indicates significant market growth, driven by advancements in gene therapy and the increasing demand for effective vaccines. The market growth is further supported by the rising prevalence of genetic disorders and infectious diseases, which necessitate innovative treatment solutions. The report provides a market forecast, offering insights into the future market value and potential growth rate.
The industry reports emphasize the importance of market research and industry research in understanding market dynamics and identifying market leaders. The market review highlights key market data, market predictions, and market outlook, providing a thorough analysis of the market size and market value. The report example and report PDF offer a detailed examination of industry trends and industry size, contributing to a comprehensive understanding of the viral vector manufacturing market.
The industry information presented in the report is crucial for research companies and stakeholders looking to navigate the market landscape. The market analysis includes a historical overview and a forecast outlook, ensuring a well-rounded perspective on market developments. The industry sales and market segmentation are thoroughly analyzed, providing valuable insights into market performance and potential opportunities for growth.